
Code Baselining for the Land Information System
Submitted under Task Agreement GSFC-CT-2

Cooperative Agreement Notice (CAN)
CAN-00OES-01

Increasing Interoperability and Performance of
Grand Challenge

Applications in the Earth, Space, Life, and
Microgravity Sciences

Version 1.0
Draft 1

1 Description of the Milestone

The milestone for the Global Land Data Assimilation System (GLDAS) code baseline
deals with the implementation and execution of the Community Land Model (CLM)
and the National Oceanic and Atmospheric Administration’s NOAH (National Cen-
ter for Environmental Prediction, Oregon State University, United States Air Force,
and Office of Hydrology) land surface model (LSM) within the GLDAS at 1/4◦ res-
olution on the ESS Testbed for the near-term retrospective period. The milestone
also requires publishing an initial version of documented source code made publicly
available via the Web. The expected completion date is July 2002.

2 Description of the Test Case Problem

GLDAS is a software system that makes use of various satellite and ground based
observation systems within a land data assimilation framework to produce optimal
output fields of land surface states and fluxes. In addition to being forced with real
time output from numerical prediction models and satellite and radar precipitation
measurements, GLDAS derives model parameters from existing high resolution veg-
etation and soil coverages. The model results are aggregated to various time and
spatial scales.

GLDAS includes ensembles of loosely coupled LSMs such as CLM and NOAH.
These land surface models aim to characterize the transfer of mass, energy, and
momentum between a vegetated surface and the atmosphere. The LSM predictions
are greatly improved through the use of a data assimilation environment such as the
one provided by GLDAS.

The Land Data Assimilation System (LDAS) system has been successful in model-
ing land surface processes in both real-time and at high resolution for North America.
However, in order to accurately predict the land surface initialization and climate
prediction problem, the LDAS system needs to be implemented globally at high res-
olution and at near-real-time. The increased resolution of the global modeling scale
of the proposed Land Information System (LIS) significantly increases the computa-
tional requirements. As a result, this problem can be termed as a grand challenge
problem.

The global land surface is modeled by dividing it into two-dimensional regions or
cells (e.g. cells of size 1km x 1km, which would lead to approximately 50,000 times
more grid points than that of GLDAS with cells of size 2◦× 2.5◦). Each cell can have
a partial spatial coverage by a number of vegetation types, as well as bare soil. The
vegetation characteristics such as leaf area index, stomatal resistance, etc. might be
time varying. The conditions in each cell (energy, water fluxes, etc.) are computed at

2

different time intervals. Each cell is driven by different atmospheric forcing variables.
Assuming approximately 0.4 milliseconds for each LSM run on a particular cell,

it can be estimated that modeling land surface processes over a year with 15 minute
timesteps would require approximately 74 years of runtime. This problem is clearly
a grand challenge simply from computational perspective.

The baselining results presented in this report were obtained by executing the
GLDAS system on the following NASA AMES systems.

• HOPPER: SGI Origin 2000 IRIX64 6.5, 64 250MHz IP27 Processors

• LOMAX: SGI Origin 3000 IRIX64 6.5, 512 400MHz IP35 Processors

The domain resolution was set to be 1/4◦. The CLM and NOAH LSMs were used in
various runs. Two different timesteps (15 and 30 minutes) were used in all runs. For
simplicity, only one tile per grid was considered in the runs. The output files were
written using the GRIB format. Various combinations of forcings (including precipi-
tation, shortwave, longwave radiation) were employed in the runs. The scalability of
the code on a single processor at different domain resolutions was also examined.

3 Description of the Computer Code Used

This section provides an algorithmic description of the computer code used in the
baselining. GLDAS is a model control and input/output system (consisting of a
number of subroutines, modules written in Fortran 77 and 90 source code) that drives
multiple offline one-dimensional LSMs using a vegetation defined “tile” or “patch”
approach to simulate subgrid scale variability. The one-dimensional LSMs, which are
subroutines of GLDAS, apply the governing equations of the physical processes of the
soil-vegetation-snowpack medium. These equations are model independent.

3.1 Description of Algorithms

• GLDAS:
Figure 1 shows the algorithmic steps involved in GLDAS. The user selects the
model domain and spatial resolution, the duration and timestep of the run, the
land surface model, the type of forcing from a list of model and observation
based data sources, the number of “tiles’ per grid square, the soil parameteriza-
tion scheme, reading and writing of restart files, output specifications, and the
functioning of several other enhancements including elevation correction and
data assimilation.

3

Modeling Starts

Get configuration

Set up model
parameters

Read restart files

arrays and analysis
Initialize output

Get base forcing

Get radiation forcing

Get precip forcing

correction to forcing
Apply elevation

Read model specific
data: LAI, albedo

Call CLM/NOAH

Write daily restarts

fields to atmos. models
Return surface

Write BC and IC data

Modeling ends

Transfer forcing
to model tiles

Finish all
tiles?

End Time
Reached

Yes

No

No

Yes

Figure 1: Flowchart for LDAS

Once the user specifications are read in, the system then reads the vegetation
information and assigns subgrid tiles on which to run the one-dimensional simu-

4

lations. Memory is dynamically allocated to the global variables, many of which
exist within Fortran 90 modules. The model parameters are read and computed
next. The time loop begins and forcing data is read, time/space interpolation is
computed and modified as necessary. The selected model is run for a vector of
“tiles”, intermediate information is stored in modular arrays, and output and
restart files are written at the specified output interval.

• CLM:
CLM is a 1-D land surface model with all forcings, parameters, dimensioning,
output routines, and coupling performed by an external driver of the user’s
design (in this case done by GLDAS). The model applies finite-difference spa-
tial discretization methods and a fully implicit time-integration scheme to nu-
merically integrate the governing equations. The model subroutines apply the
governing equations of the physical processes of the soil-vegetation- snowpack
medium, including the surface energy balance equation, Richard’s equation for
soil hydraulics, the diffusion equation for soil heat transfer, the energy-mass
balance equation for the snowpack, and the Collatz et al. formulation for the
conductance of canopy transpiration.

• NOAH:
NOAH land surface model is a stand-alone, uncoupled, 1-D column model. In
this uncoupled mode, near-surface atmospheric forcing data is required as in-
put forcing. The LSM simulates soil moisture (both liquid and frozen), soil
temperature, skin temperature, snowpack depth, snowpack water equivalent,
canopy water content, and the energy flux and water flux terms of the surface
energy balance and surface water balance. The model applies finite-difference
spatial discretization methods and a Crank-Nicholson time-integration scheme
to numerically integrate the governing equations of the physical processes of the
soil vegetation-snowpack medium, including the surface energy balance equa-
tion, Richard’s equation for soil hydraulics, the diffusion equation for soil heat
transfer, the energy-mass balance equation for the snowpack, and the Jarvis
equation for the conductance of canopy transpiration.

3.2 Documentation of the Computer Code

The documentation of GLDAS and the land surface models (CLM 1.0 and NOAH
2.5) can be accessed at http://lis.gsfc.nasa.gov/docs/LDAS-Doc/ldas2/index.
html.

5

http://lis.gsfc.nasa.gov/docs/LDAS-Doc/ldas2/index.html
http://lis.gsfc.nasa.gov/docs/LDAS-Doc/ldas2/index.html

3.3 Code Repository

The computer source code employed in the baselining may obtained from the LIS
baseline repository .

4 Results

GLDAS was run on different SGI Origin systems with various combinations of forcings
and different land surface models. The computational demands of various runs are
quantified using three parameters: CPU times, disk usage, and memory usage.

4.1 CPU Times

A dynamic runtime profiling, using SGI’s speedshop toolkit, was conducted to identify
the most computationally intensive features of the code. Figures 2, 3, 6, and 7 show
the CPU times of these functions. They are identified as:

• getgeos: This function opens, reads, and interpolates GEOS (Goddard Earth
Observing System) forcing.

• ipolates: This function performs spatial interpolation.

• zterp: This function computes the zenith angle based temporal interpolation.

• getgrad: This function opens, reads, interpolates, and overlays radiation forc-
ing.

• getglbpcp: This function opens and reads global precipitation forcing.

• clm−main: This is the main call to the CLM LSM.

• clm−out: CLM output writer.

• noah−main: This is the main call to the NOAH LSM.

• noah−out: NOAH output writer.

The corresponding contributions to the CPU times are shown as percentages in
Figures 4, 5, 8 and 9. GEOS, NRL, and AGRMET indicate GEOS forcing, NRL
precipitation forcing, and AGRMET radiation forcings, respectively. TS=1800 denote
a timestep of 30 minutes.

6

ftp://hsbserve.gsfc.nasa.gov/LIS/baseline/
ftp://hsbserve.gsfc.nasa.gov/LIS/baseline/

0

500

1000

1500

2000

2500

3000

3500

4000

T
im

e
(s

ec
on

ds
)

GLDAS1/4−GEOS/CLM/HOPPER (TS=1800)

getgeos ipolates zterp getgrad getglbpcp clm_main clm_out

GEOS
GEOS+NRL

GEOS+NRL+AGRMET

Figure 2: CPU times of computationally intensive functions on HOPPER for CLM
runs

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

T
im

e
(s

ec
on

ds
)

GLDAS1/4−GEOS/CLM/LOMAX (TS=1800)

getgeos ipolates zterp getgrad getglbpcp clm_main clm_out

GEOS
GEOS+NRL

GEOS+NRL+AGRMET

Figure 3: CPU times of computationally intensive functions on LOMAX for CLM
runs

It can be observed that the contributions of functions in terms of percentages
remain consistent across different computers, although the actual computational times

7

0

5

10

15

20

25

30

35

40

45

Pe
rc

en
ta

ge

GLDAS1/4−GEOS/CLM/HOPPER (TS=1800)

getgeos ipolates zterp getgrad getglbpcp clm_main clm_out

GEOS
GEOS+NRL

GEOS+NRL+AGRMET

Figure 4: Percentage of total CPU times for computationally intensive functions on
HOPPER for CLM runs

0

5

10

15

20

25

30

35

40

45

50

Pe
rc

en
ta

ge

GLDAS1/4−GEOS/CLM/LOMAX (TS=1800)

getgeos ipolates zterp getgrad getglbpcp clm_main clm_out

GEOS
GEOS+NRL

GEOS+NRL+AGRMET

Figure 5: Percentage of total CPU times for computationally intensive functions on
LOMAX for CLM runs

differ.

8

0

500

1000

1500

2000

2500

3000

3500

4000

T
im

e
(s

ec
on

ds
)

GLDAS1/4−GEOS/NOAH/HOPPER (TS=1800)

getgeos ipolates zterp getgrad getglbpcp noah_main noah_out

GEOS
GEOS+NRL

GEOS+NRL+AGRMET

Figure 6: CPU times of computationally intensive functions on HOPPER for NOAH
runs

0

200

400

600

800

1000

1200

1400

1600

1800

2000

T
im

e
(s

ec
on

ds
)

GLDAS1/4−GEOS/NOAH/LOMAX (TS=1800)

getgeos ipolates zterp getgrad getglbpcp noah_main noah_out

GEOS
GEOS+NRL

GEOS+NRL+AGRMET

Figure 7: CPU times of computationally intensive functions on LOMAX for NOAH
runs

The impact of the duration of timestep was examined by reducing the timestep
from 30 minutes to 15. The results obtained using CLM on HOPPER is shown as

9

0

5

10

15

20

25

30

35

40

45

50

Pe
rc

en
ta

ge

GLDAS1/4−GEOS/NOAH/HOPPER (TS=1800)

getgeos ipolates zterp getgrad getglbpcp noah_main noah_out

GEOS
GEOS+NRL

GEOS+NRL+AGRMET

Figure 8: Percentage of total CPU times for computationally intensive functions on
HOPPER for NOAH runs

0

5

10

15

20

25

30

35

40

45

50

55

Pe
rc

en
ta

ge

GLDAS1/4−GEOS/NOAH/LOMAX (TS=1800)

getgeos ipolates zterp getgrad getglbpcp noah_main noah_out

GEOS
GEOS+NRL

GEOS+NRL+AGRMET

Figure 9: Percentage of total CPU times for computationally intensive functions on
LOMAX for NOAH runs

a representative sample in Figure 10. The values obtained at 15 minute timesteps
are compared with projected values using the computational times obtained using

10

30 minute timesteps. It can be observed that the time for the LSM calls increase (2
fold) with reduction in timestep duration. The interpolation functions (ipolates and
zterp) are not affected by the decreased timestep since the data is not interpolated at
every timestep. This leads to the less than linear scaling of the main forcing function
(getgeos).

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

T
im

e
(s

ec
on

ds
)

GEOS/CLM/HOPPER

getgeos ipolates zterp clm_main clm_out

GEOS−1800
GEOS−900

projected − GEOS−900

Figure 10: Effect of timestep duration on the computational times for CLM runs

To study the scalability of the code with increase in domain size, profiling studies
were conducted for a domain increase from 2◦ × 2.5◦ to 1/4◦. The results are shown
in Figures 11 and 12 for runs on HOPPER. The computational times at 1/4◦ are also
compared with some projected values computed from the 2◦ × 2.5◦ runs. It can be
observed that the different segments of the code scales mostly as expected with the
output routines of the LSMs being the notable exceptions. This could be attributed
to the nonlinear scaling nature of the specific output libraries in these routines.

Table 1 lists a measure of computational intensity on different platforms for various
runs. It can be observed that the performance of the code on LOMAX is significantly
better than that on HOPPER. For example, the computational complexity measured
for the CLM run using GEOS forcing on HOPPER is approximately twice that of
the run on LOMAX. It can also be seen that CLM is computationally more intensive
than NOAH. The measured computational complexities for NOAH are smaller than
that of CLM as shown in Table 1. From the Figures 2, 3, 6, and 7 , it can also be
observed that the calls to CLM routines take more time than those of NOAH.

11

0

500

1000

1500

2000

2500

3000

3500

4000

T
im

e
(s

ec
on

ds
)

GEOS/CLM/HOPPER

getgeos ipolates zterp getgrad clm_main clm_out

GEOS+NRL+AGRMET−2x2.5
GEOS+NRL+AGRMET−1/4

projected − GEOS+NRL+AGRMET−1/4

Figure 11: Effect of domain increase from 2◦ × 2.5◦ to 1/4◦ on the computational
times for CLM runs

0

500

1000

1500

2000

2500

3000

3500

4000

T
im

e
(s

ec
on

ds
)

GEOS/NOAH/HOPPER

getgeos ipolates zterp getgrad noah_main noah_out

GEOS+NRL+AGRMET−2x2.5
GEOS+NRL+AGRMET−1/4

projected − GEOS+NRL+AGRMET−1/4

Figure 12: Effect of domain increase from 2◦ × 2.5◦ to 1/4◦ on the computational
times for NOAH runs

12

Table 1: Measure of computational intensity for GLDAS 1/4◦ runs (ms/gridcell/day)

CLM NOAH
Timestep (minutes)

15 30 15 30
GEOS 13.94 9.10 13.71 8.34

HOPPER GEOS + NRL 14.24 9.28 14.12 8.49
GEOS + NRL + AGRMET 15.24 10.07 14.64 9.31

GEOS 7.67 4.98 6.94 4.38
LOMAX GEOS + NRL 7.85 5.06 7.11 4.46

GEOS + NRL + AGRMET 8.41 5.56 7.62 4.88

4.2 Disk Usage

The GLDAS code uses three categories of global data: parameter data, input forcing
data and output data. The parameter data include vegetation classification, land
mask, etc., with a size of approximately 136GB. The code reads in the forcing data
at regular intervals, with the traffic estimated to be approximately 279 MB/day.

For the baselining results presented in this report, the code and requisite files
require 1.1GB of hard disk space. The disk space required for output for different
baselining runs are shown in Table 2. It can be noticed that the disk usage increases
almost linearly with the increase in domain size. Using these values, the output
data volume for the global 1km run using CLM and NOAH can be estimated to be
approximately 250 GB/day and 150 GB/day, respectively.

Table 2: Disk Usage for various GLDAS runs (in MB)

CLM NOAH
GLDAS 2◦ × 2.5◦ 5 3

GLDAS 1/4◦ 400 235

4.3 Memory Usage

The GLDAS code also requires significant memory for execution. The following ta-
ble 3 lists the approximate memory requirements for GLDAS runs with different land

13

Table 3: Memory Usage for various GLDAS runs

CLM NOAH
GLDAS 2◦ × 2.5◦ 250 MB 200 MB

GLDAS 1/4◦ 3.5 GB 2.0 GB

surface models. Using these values, the memory requirements for GLDAS run at 1km
resolution on a single machine can be estimated to be approximately 2TB.

5 Conclusions

These profiling results have demonstrated the functions that are most time-consuming,
thereby identifying the portions of our code-set that require our immediate attention.
These profiling results also demonstrate that these critical functions scale with re-
spect to time and space as predicted, suggesting that across-the-board performance
improvements can be made from re-writing these critical routines, instead of having
to make specialized performance improvements for specific scenarios. As discussed
in the eariler section, Figure 10 shows the scalability of various code segments with
timestep and Figures 11 and 12 shows the scalability of the code for a larger domain.

The baselining study has also helped in quantifying the disk and memory usage
requirements of the GLDAS code. As mentioned earlier, the estimated disk output
volume at 1km resolution (150-250GB/day) is extremely large and it is not feasible
to store the output in a single file. As a result, the computing strategy must involve
a design to distribute the data across different nodes to keep the output data volume
manageable. Similarly, the projected memory usage at 1km resolution is very large
(∼ 2TB) and the problem need to be split up into smaller pieces to satisfy the memory
requirements of a real-time operation.

6 Future Directions

In order to meet future milestones F and G, regarding the performance of LIS, we
need to be able to characterize the behavior of our initial code set and use this charac-
terization to guide our software development, system design, and code improvement.
From the results presented in this report, it is apparent that global scale land sur-
face modeling at 1km resolution poses significant computational challenges, from a
computational as well as data/memory management perspectives. Parallel comput-

14

ing has emerged as the enabling technology that will help modern computers satisfy
increasing high performance computing requirements. We plan to build a system that
takes advantage of scalable parallel computing technologies to facilitate global land
surface modeling. The land surface processes have rather weak horizontal coupling
on short time and large space scales, enabling highly efficient scaling across massively
parallel computing platforms. The high data densities could pose limitations on the
land surface modeling efficiencies, and the LIS system will explore the use of high
performance technologies to eliminate this bottleneck.

15

	Description of the Milestone
	Description of the Test Case Problem
	Description of the Computer Code Used
	Description of Algorithms
	Documentation of the Computer Code
	Code Repository

	Results
	CPU Times
	Disk Usage
	Memory Usage

	Conclusions
	Future Directions

